一、题目描述
给定一个完美二叉树,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL
。
初始状态下,所有 next 指针都被设置为 NULL
。
示例:
输入:{"$id":"1","left":{"$id":"2","left":
{"$id":"3","left":null,"next":null,"right":null,"val":4},"next":null,"right":
{"$id":"4","left":null,"next":null,"right":null,"val":5},"val":2},"next":null,"right":
{"$id":"5","left":
{"$id":"6","left":null,"next":null,"right":null,"val":6},"next":null,"right":
{"$id":"7","left":null,"next":null,"right":null,"val":7},"val":3},"val":1}
输出:{"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":
{"$id":"4","left":null,"next":{"$id":"5","left":null,"next":
{"$id":"6","left":null,"next":null,"right":null,"val":7},"right":null,"val":6},"right":null,"val":5},"right":null,"val":4},"next":
{"$id":"7","left":{"$ref":"5"},"next":null,"right":{"$ref":"6"},"val":3},"right":
{"$ref":"4"},"val":2},"next":null,"right":{"$ref":"7"},"val":1}
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。
提示:
- 你只能使用常量级额外空间。
- 使用递归解题也符合要求,本题中递归程序占用的栈空间不算做额外的空间复杂度。
二、思路
1. 层次遍历
根据题意可以知道,这道题就是在二叉树中每一层的各个节点间创建一个从左向右指向的链表。所以可以使用层次遍历的方式,一层一层的遍历。
创建两个栈stack
和new_stack
,stack
用来保存当前层的节点,new_stack
用来保存下一层的节点。
首先对stack
中的节点进行链接,同时获取下一层的节点并保存到new_stack
中。当当当前层节点链接完以后,然后再将new_stack
重新赋值给stack
。
最后返回root
。
三、代码
1. 层次遍历
"""
# Definition for a Node.
class Node:
def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
self.val = val
self.left = left
self.right = right
self.next = next
"""
class Solution:
def connect(self, root: 'Node') -> 'Node':
# 层次遍历
if not root:
return
stack = []
stack.append(root)
while stack:
new_stack = []
while stack:
node = stack.pop(0)
if len(stack) <= 0:
node.next = None
else:
node.next = stack[0]
if node.left:
new_stack.append(node.left)
if node.right:
new_stack.append(node.right)
stack = new_stack
return root
四、表现
method | 运行时间 | 表现 | 内存消耗 | 表现 |
---|---|---|---|---|
1. 层次遍历 | 84ms | 54.58% | 15.2MB | 5.31% |